Teerthanker Mahaveer University Faculty of Engineering M.Sc. (Physics)

Programme Specific Outcome

PSO – 1	:	Understanding and learning the concepts in basic as well as certain advanced areas of Physics.
PSO – 2	•	Learning designing and performing experiments in the labs to demonstrate the concepts of principles learned in classrooms.
PSO – 3	:	Applying the knowledge acquired in the classrooms and laboratories to solve a wide range of problems in theoretical and experimental Physics.
PSO – 4	:	Analyzing the real-life problems and to seek their solutions using one's own knowledge & understanding related to Physics.
PSO – 5	:	Creating a critical attitude and logical reasoning among students to make them able for applying knowledge of physics in diverse fields

Course Outcomes

MPH111	CO1.	Understanding the structure of vector space.
	CO2.	Applying the methodologies & techniques of training to develop a
		training plan.
	CO3.	Applying the concepts of Calculus of variation like Euler Equation,
		Lagrange's Equation, and Hamilton's Principle.
	CO4.	Applying the special function, recurrence relations in solving
		integration problems.
	CO5.	Analyzing the dependency of vectors in linear equations.
MPH112	CO1.	Understanding the concept of generalized coordinates,
		Lagrangian, and Hamiltonian formalism.
	CO2.	Understanding the concepts of central force, scattering under
		central force field & Euler angles.
	CO3.	Understanding concepts of frames of references and special
		theory of relativity
	CO4.	Applying the Lagrange-Hamilton formalism to study the motion of
		various mechanical systems.
	CO5.	Applying the Euler angle concept for solving the problems of
		symmetric top & vibrating string motions.
MPH113	CO1.	Understanding basic concepts of wave function, operator algebra
		and Schrodinger equation in quantum physics.
	CO2.	Understanding the concepts of matrix formulation and

		generalized uncertainty principle in quantum mechanics.
	CO3.	Applying Schrodinger equation for solving harmonic oscillator,
		particle in a hard potential box and tunneling problems.
	CO4.	Applying Schrodinger equation for mechanism hydrogen atom
		and calculating the dependence of energy on quantum numbers
		and shape of orbitals.
	CO5.	Applying operator algebra for understanding the coupling of
		angular momentum and calculating Clebsch-Gordan coefficients.
MAT115	CO1.	Understanding basic concepts of research and its methodologies,
		sampling techniques, meaning of scaling, its classification,
		important scaling techniques, basic principles of graphical
		representation
	CO2.	Identifying appropriate research topics using better central
		tendency and dispersion procedures
	CO3.	Analyzing different research problem and their associated
		parameters, hypothesis with significance levels and different
		degree of freedoms, correlation and regression
	CO4.	Evaluating appropriate project proposal (to undertake a project),
		significance of report writing, layout and precautions for writing
	COF	research report.
	CO5.	creating, organizing and conducting research (advanced project)
		analysis
MDH161	CO1	Linderstanding the concents of Elliptical and Hyperbolic Eringes
WIFTIOI	CO1.	Applying the Ouinck's & Guoy's methods to observe the magnetic
	CO2.	suscentibility of liquid & solid materials
	CO3.	Analysing fibre attenuation & Stefan's constant.
	CO4.	Analysing the resistivity properties of semiconductor material.
	CO5.	Analysing the characteristic curve, band gap energy of a
		thermistor, elastic constants & Curie temperature using CRO
MPH162	CO1.	Understanding the concepts of Electromagnetism & optics laws to
		find dielectric constant & Cauchy constant.
	CO2.	Applying the concepts of frequency variation in various oscillators.
	CO3.	Applying ESR method to find the spin of electron.
	CO4.	Analysing the BH curve on CRO & I-V characteristic of solar cell.
	CO5.	Analysing the parameters of semiconductors using Hall effect.
TMUPA-101	CO1.	Operationalizing the inter-related concept of Percentage in Profit
		Loss and Discount.
	CO2.	Applying the arithmetical concepts in Ratio and Proportion,

	CO3.	Employing the techniques of Percentage, Ratios and Average in
		inter related concepts of Time and Work, Time speed and
		Distance.
	CO4.	Evaluating the different possibilities of various reasoning based
		problems in series, Direction and Coding-Decoding.
TMUPS-101	CO1.	Utilizing effective verbal and non-verbal communication
		techniques in formal and informal settings
	CO2.	Understanding and analyzing self and devising a strategy for self
		growth and development.
	CO3.	Adapting a positive mindset conducive for growth through
		optimism and constructive thinking.
	CO4.	Utilizing time in the most effective manner and avoiding
		procrastination.
	CO5.	Making appropriate and responsible decisions through various
		techniques like SWOT, Simulation and Decision Tree.
	CO6.	Formulating strategies of avoiding time wasters and preparing to-
		do list to manage priorities and achieve SMART goals.
MPH211	CO1.	Understanding concepts of the Fourier series, Fourier transform
		and Laplace transform.
	CO2.	Understanding about Analytic functions, Cauchy-Riemann
		relations and their physical significance.
	CO3.	Understanding about Taylor and Laurent expansions and
		singularities
	CO4.	Understanding Group, Field and Rings and their properties.
	CO5.	Applying Fourier transform and Laplace transform in the various
		fields of Physics.
	CO6.	Analyzing complex integrals in solving real problems of Physics.
MPH212	CO1.	Understanding the physics of crystal structure, defects and
		various type of atomic bonding in crystal.
	CO2.	Understanding the x ray diffraction and the theory of specific heat
		of solids.
	CO3.	Understanding the electrical and thermal properties of metals and
		semiconductor.
	CO4.	Understanding the magnetic and superconducting properties of
	CO5.	Applying the Bragg's law to deduce the crystal structure of
		materials.
	LOP.	Apprying the concept of Josephson Junction to understand the
		working and principle of SQUIDs
IVIPH213	CO1.	Understanding the spectrum of atoms and their origin such as

		spin orbit interaction LS and JJ couplings.
	CO2.	Understanding the effects on the atoms when placed in an
		external field like electric and magnetic.
	CO3.	Understanding the concepts of motion of atoms & molecules in
		an environment.
	CO4.	Applying the principals of electronic vibrations to study of UV &
		Vis spectrum.
	CO5.	Applying the rigid/non-rigid rotator concepts to explain
		microwave and IR spectroscopy
	CO6.	Applying the Frank-Condon principle to measure dissociation
		energy in electronic spectrum.
MPH214	CO1.	Understanding of approach of perturbation theory, WKB
		approximation, scattering theory.
	CO2.	Understanding the Variation& WKB methods to explain the
		ground state of Helium.
	CO3.	Understanding the concepts of Spinor.
	CO4.	Applying the perturbation methods to explain the fine structure in
		H-atom & Zeeman effect.
	CO5.	Applying Dirac theory to explain existence of positron.
	CO6.	Analyzing of electron systems which cannot solved by the
	004	Schrödinger equations.
MPH261	CO1.	Understanding the concepts of Michelson Interferometer used in
	<u> </u>	Analyzing the data and plat of CNA Counter to understand the
	CO2.	Analyzing the data and plot of GM Counter to understand the
	<u> </u>	Analyzing of Succentibility using Quinck's & Guov's apparatus
	CO_{4}	Analyzing of Susceptibility using Quinck's & Guoy's apparatus.
	04.	dron method
	CO5	Analyzing the existence of atomic energy levels using Franck -
		Hertz Experiment
	CO6.	Analyzing the perturbation of energy levels applying weak
		magnetic field (Zeeman effect)
MPH262	CO1.	Understanding the concepts of Malus law & Beer–Lamber law.
	CO2.	Understanding the function of Linear and Preamplifier circuits.
	CO3.	Applying the concepts of thermal field to determine the
		conductivity and luminescence properties of materials.
	CO4.	Applying Beer-Lamberts law to measure the extinction
		coefficients of materials.
	CO5.	Analyzing psychometric chart to find relative humidity
TMUPA-201	CO1.	Applying the concepts of modern mathematics Divisibility rule,

		Remainder Theorem, HCF /LCM in Number System.
	CO2.	Relating the rules of permutation and combination, Fundamental
		Principle of Counting to find the probability.
	CO3.	Applying calculative and arithmetical concepts of ratio, Average
		and Percentage to analyze and interpret data
	CO4.	Employing the concept of higher level reasoning in Clocks and
		Calendars, Set theory and Puzzle Problems.
TMUPS-201	CO1.	Communicating effectively in a variety of public and interpersonal
		settings.
	CO2.	Applying concepts of change management for growth and
		development by understanding inertia of change and mastering
		the Laws of Change.
	CO3.	Analyzing scenarios, synthesizing alternatives and thinking
		critically to negotiate, resolve conflicts and develop cordial
		interpersonal relationships.
	CO4.	Functioning in a team and enabling other people to act while
		encouraging growth and creating mutual respect and trust.
	CO5.	Handling difficult situations with grace, style, and professionalism
MPH311	CO1.	Understanding the electrostatics, magnetostatics& EM concepts
		of fields.
	CO2.	Understanding the boundary conditions at interface of two
		media.
	CO3.	Understanding concept of propagation of EM wave through
		bounded and unbounded media
	CO5.	Applying Gauss's law, Poisson and Laplace equations method of
		image to find the electric fields and potentials.
	CO6.	Applying Ampere's law to find the magnetic field solenoid etc.
	CO7.	Applying radiation theory to understand the concept of antenna
MPH312	CO1.	Remembering and understanding importance and applications of
		thermodynamic laws.
	CO2.	Understanding the concepts of probability and their relations with
		Statistical Mechanics.
	CO3.	Understanding the concepts of macroscopic and microscopic
		phenomenon.
	CO4.	Applying the Maxwell distribution to explain equation of state for
		a non-ideal gas; Vander Waals' equation of state; Meyer cluster
		expansion.
	CO5.	Applying the Fermi-Dirac distribution to explain the paulipara-
		magnetism and White dwarf.
		I Angeluing the D.E.Ctetistics to suplain black hady realistics

properties. CO2. Understanding the carrier transport mechanism in semiconductors. CO3. Understanding functioning of junction devices such as p-n diodes, MOSFET, BJT. CO4. Applying IC fabrication process. CO5. Applying the concepts of deposition methods for preparation of Crystals. MHM320 CO1.
CO2. Understanding the carrier transport mechanism in semiconductors. CO3. Understanding functioning of junction devices such as p-n diodes, MOSFET, BJT. CO4. Applying IC fabrication process. CO5. Applying the concepts of deposition methods for preparation of Crystals. MHM320 CO1.
semiconductors. CO3. Understanding functioning of junction devices such as p-n diodes, MOSFET, BJT. CO4. Applying IC fabrication process. CO5. Applying the concepts of deposition methods for preparation of Crystals. MHM320 CO1.
CO3. Understanding functioning of junction devices such as p-n diodes, MOSFET, BJT. CO4. Applying IC fabrication process. CO5. Applying the concepts of deposition methods for preparation of Crystals. MHM320 CO1.
MOSFET, BJT. CO4. Applying IC fabrication process. CO5. Applying the concepts of deposition methods for preparation of Crystals. MHM320 CO1. Understanding the importance of value education in life and
CO4. Applying IC fabrication process. CO5. Applying the concepts of deposition methods for preparation of Crystals. MHM320 CO1. Understanding the importance of value education in life and
CO5. Applying the concepts of deposition methods for preparation of Crystals. MHM320 CO1. Understanding the importance of value education in life and
Crystals. MHM320 CO1. Understanding the importance of value education in life and
MHM320 CO1. Understanding the importance of value education in life and
method of self-exploration.
CO2. Understanding 'Natural Acceptance' and Experiential
Validation- as the mechanism for self-exploration.
CO3. Applying right understanding about relationship and physical
facilities.
CO4. Analysing harmony in myself, harmony in the family and
society, harmony in the nature and existence.
CO5. Evaluating human conduct on ethical basis.
MPH361 CO1. Understanding the working of various electronic circuits like
differentiator, integrator, logic gates etc.
CO2. Understanding the OP-AMP, Adder, Substractor and various IC's
to understand their working.
CO3. Applying logics gates to verify the Boolean algebra.
CO4. Applying the IC's as a stable multivitorator and voltage controlled
oscillator, multiplication and division etc.
CO5. Analyzing the I-V characteristic of FET and MOSFET.
MPH313 CO1. Understanding the basics concepts of dielectric and ferroelectric
properties of materials.
CO2. Understanding the concepts of corrosion in superconductors.
transformations in allow
COA Applying the key concents of electic behaviour to understand the
mochanical properties of materials
CO5 Analyzing the phase diagrams to understand the Austenite
Pearlite Bainite and Martensite phases of Iron-Carbon alloys
MPH315 CO1. Understanding the basics of nano-particle its classification and
synthesis
CO2 . Understanding the concent of nano-magnetism nano-electronics
and integrated system
CO3. Applying the various microscopy techniques to characterize nano-

		materials.
	CO4.	Applying the concepts of nano-materials in developing, LEDs, SET
		and DNA Chips.
	CO5.	Applying the concepts of Hall effect in working of Hall effect
		sensors.
MSC012	CO1.	Understanding basics of biology in Physics.
	CO2.	Understanding the physical methods of investigation of
		macromolecules for the analysis of biological systems.
	CO3.	Understanding the concepts of isotopes for labelling and
		detection of biomolecules in non-curable diseases.
	CO4.	Applying the instrumental methods to characterize the
		macromolecules.
	CO5.	Applying the radiation sources to explain the effect of radiation
		on living systems
MPH319	CO1.	Understanding observation and estimation of errors in
		experimental data.
	CO2.	Understanding production and measurement various vacuum
		systems.
	CO3.	Understanding the techniques of production and measurement of
		low and high temperature.
	CO4.	Understanding the concept of monochromatrors, photomultipier,
		used in various radiation detectors.
	CO5.	Applying the concept of error measurement to best fit the
	606	experimental data using least square method.
	CO6.	Applying the concept of Magnetic resonance to understand the
NADU 221	<u> </u>	principle and working of NIVIR, ESR, NQR and ENDOR.
INIPH321	<u> </u>	
	<u> </u>	Applying the truth table of logic gates in different logic system
	CO3.	Applying the truth table of logic gates in different logic system.
	CO4.	
	CO3.	Understanding various analog modulation techniques like AM
WIF 11412		FM PM
	<u> </u>	Understanding the fundamental concents of Digital
	002.	communication
	CO3.	Understanding the classification of the elementary particles and
		their interactions.
	CO4.	Applying the Fourier series and transform for signal transmission.
	CO5.	Applying the basics of Optical communication
MPH414	CO1.	Understanding the basic nuclear properties, force and nuclear

		models.
	CO2.	Understanding the concepts and properties of nuclear decays
		processes.
	CO3.	Understanding the basic concept of nuclear reactions.
	CO4.	Understanding the symmetry and conservations laws elementary
		particles.
	CO5.	Applying the selection rule to explain the decay process.
	CO6	Analyzing binding energy curves to explain the stability of nuclei.
MAT461	CO1.	Understanding simple program modules to implement single
		numerical methods and algorithms.
	CO2.	Applying to use basic flow controls (if-else, for, while).
	CO3.	Applying Test program output for accuracy using hand
		calculations and debugging techniques
	CO4.	Applying multiple program modules into larger program packages
	CO5.	Analyzing the generate plots and export this for use in reports and
		presentations
MPH411	CO1.	Understanding basic concept of Plasma state and various gas
		discharge principle and method.
	CO2.	Understanding the concept of fluid and kinetic description of
		plasma.
	CO3.	Understanding the concept of thermonuclear fusion.
	CO4.	Applying single particle dynamics to understand the particle
		confinement.
	CO5.	Applying the fluid description of plasma explaining the generation
		of ion acoustic, Alfven and magnetosonic wave.
	CO6.	Applying the kinetic description of plasma to explain the
		phenomena of Landau damping.
MPH413	CO1.	Understanding the basic concepts of Astronomy, various co-
		ordinates and time systems and various astronomical
	<u> </u>	Instruments.
	CO2.	Understanding the properties and classification of stars.
	003.	properties of planets and satellites and theory of formation of the
		solar system
	CO4	Applying Chandrasekhar's Limit for the formation of White
	004.	Dwarfs Neutron Stars and Black Holes
	CO5.	Applying the concepts of hydrostatic equilibrium mass
		conservation, luminosity and temperature gradient equations for
		the formation of stellar structure.
	CO6.	Applying the Schwarzschild criterion for the stability of the stellar
	CO4. CO5. CO6.	solar system. Applying Chandrasekhar's Limit for the formation of White Dwarfs, Neutron Stars, and Black Holes. Applying the concepts of hydrostatic equilibrium, mass conservation, luminosity and temperature gradient equations for the formation of stellar structure. Applying the Schwarzschild criterion for the stability of the stellar

		medium
MPH 431	CO1.	Understanding the world we inhabit
	CO2.	Understanding the hierarchical structuring of the universe in
		categories of space, time, matter and energy, from the very small
		to the gigantic.
	CO3.	Understanding the bonding from chemical compound to large
		molecule and living matter.
	CO4.	Applying the physical concept in weather forecast.
	CO5.	Analyzing physical realities of quantum world